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o Interference in gg — H — yy

o Real part interference: mass shift
o NLO corrections to interference
o Bounding I'y using mass shift

o Conclusion



Higgs Production
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o Dominated by gluon fusion through a top quark loop

tD--H = ® - -H

o 1o make higher order correction feasible,
approximate top quark loop by effective ggH vertex

o Similarly, photon couples to Higgs through top
quark and W boson loop, can also be approximated

by effective yyH vertex

new physics correction
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Higgs Decay
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Signal strength (u)

o Formp~ 125GeV, Higgs
resonance is weak

o Diphoton decay

o excellent experimental photon energy
resolution = yy signal visible even though
Br(H—yy) ~ 0.0023

o  fully reconstructed invariant mass
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o large SM background

o data in reasonable agreement with SM
prediction

o Additional invisible/

undetectable decay channels
could increase Higgs total
width and reduce yy BR



Full Diphoton Amplitude
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o Gluon pair to diphoton full amplitude
A g—>H~A V=l
]\42 —m% +imyly e
o Higgs signal appears as reSOnance in diphoton invariant mass MW
spectrum

Agg—)fyfy _I_ ACOIlt

o Finite detector resolution make direct measurement on Higgs width
impossible

o The only observable: signal strength in narrow width approximation

~ |Aggs o Ay~ H|? 5519 — / dM.,., ( Always appears

\l H, as a combo!
o InSM, all Higgs properties dictated by mp, how well can we test
them at LHC?

o Need to decouple width from couplings



Interference
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L.Dixon, M.Siu, hep-ph/0302233

o Need to examine the width dependence of the interference

o The interference contribution
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o Integrated contribution of the interference term: suppressed

by small Higgs width in size comparing to the pure signal
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Interference
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o Interference has two pieces B ntd e

i Im(Agg%HAfy’y%H-A:ont)
(M2, —mg)R+mplyl
(M2, —m3)? +m3 T

D .Dicus, S.Willenbrock, Phys.Rev.D37,1801

o Real part of Breit-Wigner: asymmetric around
Higgs peak, negligible contribution to
integrated cross section given that R doesn'’t
vary too quickly

~ CgCy

O_int o /dM’yfy

o Imaginary part of Breit-Wigner: constructive
or destructive contribution depending on the
relative phase between signal and background



Imaginary part ot Interference
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S o The full gg—H—yvy signal

amplitude is mainly real due to

the dominant contribution from

heavy top and W loops;

contribution from light quark

X loops is suppressed by Yukawa
couplings
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o Need imaginary part from SM background for the relative phase

o SM continuum contribution starts at 1-loop

o vanishing imaginary part in massless quark limit at LO

o  Major imaginary part of SM background starts at 2-loop, leading to 1-2%
destructive interference

(Theoretical uncertainty on signal~15 %)

o 1oo small an effect to see ...



[.LO Mass Shift
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Interference only (LO) 100;‘
o Real-part interference J

[fb/GeV]
(@)
o

o

Y

o non-vanishing at 1-loop with massless quarks s
5 -s0f
o odd around Higgs mass = Higgs mass peak shift }
-100r

12495 125

o  generically, asymmetric shape peaks/dips at mu= I'v/
2 = mass shift ~['u

S.Martin, hep-ph/1208.1533 S
o Different story when including effect Lo L B 5
of finite detector resolution _:

[fb/GeV]
o

o  considerable contribution from Breit-Wigner tails

= 0.0
_F
o  potentially visible shift of Higgs mass peak ~ 100 = o4k
MeV ;
0.2F

110 115 120 125 130 135 140
[GeV]




[.LO Mass Shift
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illustration of how interference changes the diphoton
invariant mass spectrum
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NLO QCD Correction
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LHC @ § TeV o Known large K factor of Higgs production and SM
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3¢ ] o more uncertainty when pT veto is involved
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hard/soft
Pry

Isolation: AR,; < 0.4, pr; > 3 GeV

Veto jet : pr; > 20 GeV, n; <3

interference due to interplay between the two parts

o imaginary part interference starts at 2-loop and is small

o real part interference receives a relative constant K factor (~2
for inclusive case) between that of pure signal (~2.5) and
background (~1.5)
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smaller K factor compared to signal = reduced mass shift

with radiation, the extra contribution from the
interference with tree level diagram in quark gluon
channel, LO(qg), partly cancels with interference of gluon
gluon channel, (N)LO(gg) = further reduces mass shift

D. de Florian etc. hep-ph/1303.1397

mostly insensitive to pT veto choice because of large
contribution from virtual correction



Bounding Higgs Width

o Mass shift sensitive to
Higgs width due to
modified couplings

o must keep constant signal yields

to be consistent with current
experimental observation
Cg’y = Cngy‘

\
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I =
mHFH g Cgfy (mHF%M

o Simple solution if vanishing
destructive (constructive)
interference

|| ~ |egy| = /T /T5M
T a=—l

ratio of

experimental
signal strength to

SM prediction
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In case NP flips the sign
of Higgs amplitude =
Constructive Interference

Complement to ILC in
constraining Higgs width!
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Probing Mass Shift
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o Need a reference channel to measure the shift:

N.Kauer, G.Passarino, hep-ph/1206.4803

o ZLZL* channel where interference near Higgs resonance is negligible

o Possible large systematic errors as current ATLAS and CMS results incompatible

iR e AIEIAS)
0.4 0.7 £ 0.6 GeV (CMS),

Gl ZZ

S.Martin, hep-ph/1303.3342

o Cancellation between qg and gg channels results in strong dependence on
Higgs pT' = virtually no mass shift on high pT events
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Constraining the Width
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o Potentially able to measure mass shift using two
Higgs pT bins

o Better choice because experimental systematic

uncertainty may cancel to some extent; still limited by
statistics at present

o At high luminosity LHC with 3 ab™! data, statistical error
on mass shift should drop to below 50 MeV; while the
extrapolation of systematic error is somewhat uncertain
but should result in a total error of 100 MeV or less,
corresponding to a bound of Higgs width of around 15
times that of SM value (4 MeV) at 95% C.L.



Conclusion
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o Part of Higgs signal and background interference
proportional to real part of BW propagator yields
potentially observable mass shift with finite detector
resolution

o The mass shift survives at NLO in QCD, allowing possibility
to study the interference experimentally, and decouple the
Higgs width and coupling measurements

o Increasing Higgs width leads to considerably larger mass
shift which can be used to bound the width

o Strong dependence of mass shift on finite Higgs pT provides
way of probing it without reference to ZZ* decay channel
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S.Martin, hep-ph/1303.3342 N.Kauer, G.Passarino, hep-ph/1206.4803
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The mass measurement can be approximated by a least square

; : fit of the mass peak, which can be shown via likelihood

in // 1s ver y analysis by assuming a relatively constant and well-modeled
small background in the mass range of consideration

interference



Higgs in Mixed CP State
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o New CP odd couplzngs in the e]‘j‘ectlve
Lagrangian
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o InSM, c,y=1 is reserved for adjusting couplings for
Higgs in mixed CP state; by is given via matching from
full theory; s./,d.,,=0 when Higgs is a CP-even scalar

o Sgy IS reserved for the same purpose as cgy

o Define d,/, so that when we turn off original CP-even
coupling (cq/ybo/y=0) and set s.,=1, the total cross
section of SM Higgs signal is reproduced = dgy = Dy,
at LO



Higgs in CP Mixed State
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o 10 keep constant signal yield, it’s not hard to find the solution: cq/,°+5g,°=1,
naturally parametrized as cqy, So/y = COS(Nary), SIN(Ngry)

o  Ifwe treat the two CP phases (1¢,1y) independently, the interference could change signs, resulting in
positive mass shift

o The mass shift is roughly 1.5 times stronger in pure CP-odd case compared to CP-even case at LO, though
CP-odd case strongly disfavored experimentally
i

pure CP-odd: n,, = &+ 5

o NLO effect is hard to tell (depending

L T T e S SRR e e R on the full theory giving rise to the
it 7 CP-odd couplings) but is expected
oo 10 . . ]
ek : to increase signal and interference
B osf i ] both as in the SM case
N el 5
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Higgs with Finite pT
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o The mass shift dependence of finite pT as CP phases vary has similar
behavior to the zero pT case

o solid line is for SM; dotted line is for cq,=0, se=s,=1,; dashed line is for cq,=0, sg=-5y=1

o  mass shift no longer crosses 0 in pure CP-odd case
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Higgs with Spin-2
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o The interference btw signal and background occurs with
different helicity configurations (compared to spin-0
case)

o  Gluon and photon pairs have opposite helicity due to spin conservation

o Thus non-vanishing imaginary part of SM background amplitude in
massless quark limit at LO

o Graviton-like: photon and gluon couples to spin-2
particle via stress energy tensor
o Dictates couplings to photon and gluon with the same sign
o Also discuss couplings with different signs here for completeness

o  Direct coupling of H to quarks not included as it’s small for graviton-
like case
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Signal vs. Interference

Slgnal Interference - zmagmary part
A .

Interference - real part

§ fr

] § — M2)? + M2I”
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o  Normalize the spin-2 coupling so that signal yield is the
same as the SM Higgs

o  Need non-zero photon pT cut for finite interference
contribution in spin-2 case

o Choose pTeus = 40 GeV to solve for Ggy by equating the
vields for spin-0 and spin-2

o Moderate pT cut (40 GeV) limits photon to central
region where interference and signal has relatively
similar angular dependence

COS emax ¥ \/1 he? CUt/Mfoy)Q Pr

o  signal-only angular distribution analysis largely
unaffected by interference contribution

fr/fO

—40GeV> 0.77

G4~ > 0 for heavy graviton

Spin 2 Interference Angular Dependence — Imaginary Part
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arbitrary units

Interference on Signal Yields (Spin-2)
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Strong constructive/

— no interference — — —

- Im(Breit—Wigner)

- mass = 125 GeV
— width = 100 MeV
- 9 = 45

®)

destructive interference at

large width because

imaginary part interference

starts at LO 42
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Interference Correction to Event Rate
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logo(width[MeV])

for I' = 100 MeV : O(1) correction to
signal yields (~50%)

Affect the coupling measurement in
spin-2 interpretation



